Neutral Pion Lifetime: Final Results from the PrimEx-I Experiment

A. Gasparian NC A&T State University, Greensboro, NC

for the PrimEx Collaboration

Outline

- > Importance of $\Gamma(\pi^0 \rightarrow \gamma\gamma)$ precision measurement
- > The PrimEx experiment
- > Control of systematic errors
- Results from PrimEx-I
- Summary and outlook

$\pi^0 \rightarrow \gamma\gamma$ Decay Width: Theory

□ $\pi^0 \rightarrow \gamma\gamma$ decay proceeds primarily via the chiral anomaly in QCD. □ The chiral anomaly prediction is exact for massless quarks:

$$\Gamma\left(\pi^{0} \rightarrow \gamma\gamma\right) = \frac{\alpha^{2} N_{c}^{2} m_{\pi}^{3}}{576\pi^{3} F_{\pi}^{2}} = 7.725 \ eV$$

 Corrections to the chiral anomaly prediction: (u-d quark masses and mass differences) Calculations in NLO ChPT: (J. Goity, at al. Phys. Rev. D66:076014, 2002) Γ(π⁰→γγ) = 8.10eV ± 1.0%

~4% higher than LO, uncertainty: less than 1%

□ QCD sum rule calculations: (B.L. Ioffe, et al. Phys. Lett. B647, p. 389, 2007) > $\Gamma(\eta \rightarrow \gamma \gamma)$ is only input parameter > π^0 - η mixing included $\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.93 \text{eV} \pm 1.5\%$

- □ Precision measurements of $\Gamma(\pi^0 \rightarrow \gamma\gamma)$ at the percent level will provide a stringent test of a fundamental prediction of QCD.
 - A. Gasparian

Primakoff Method

Challenge: Extract the Primakoff amplitude

A. Gasparian

Previous Experiments (included in PDG)

Previous Measurements

- Untagged bremsstrahlung γ beam
- Conventional Pb-glass calorimetry

þ

Comell

DEST

NLO $\chi PT \pm 1.0\%$

Leading Order

The PrimEx Experiment at JLab

PrimEx Milestones

Approved in 1999, Re-approved in 2002 (E02-103).

□ Installation of setup in August, 2004.

Commissioning: September, 2004

Data taking: September-November
 data on two targets: ¹²C and ²⁰⁸Pb,
 Total number of π⁰: ~3.2 M
 Total elastic π⁰: ~300 K
 Total Primakoff π⁰: ~3-5 K

First preliminary results released at the April, 2007 APS meeting with AIP press conference.

The final result reported at Chyral Dynamics, CD-2009, July 2, 2009

Preparing for publication.

A. Gasparian

π^0 Event selection

We measure:

- > incident photon energy: E_{γ} and time
- > energies of decay photons: $E_{\gamma_1}, E_{\gamma_2}$ and time
- > X,Y positions of decay photons

Kinematical constraints:

Conservation of energy;
Conservation of momentum;
m_{γγ} invariant mass

Three groups analyzed the data independently

π^0 Event selection

 Tagger-HyCal timing (Δt);
 Invariant mass (M_{γγ});
 Energy conservation: Elasticity ((E_{γ1}+E_{γ2})/E_{tagger})

A. Gasparian

Fit to Extract $\pi^0 \rightarrow \gamma\gamma$ Decay Width

Theoretical angular distributions smeared with experimental resolutions are fit to the data

 $\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.82 \text{ eV} \pm 2.2\%$ (stat. error, including fit error)

The systematic errors ?

Control of Systematic Errors: Luminosity: e⁺e⁻ Cross Section

□ Cross sections are in agreement with theory at few percent level

Final Result from PrimEx-I

$\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.82 \text{eV} \pm 2.2\% \text{ (stat.)} \pm 2.1\% \text{ (syst.)}$ (± 3.0% total)

Next PrimEx-II Experiment

Statistical error: 0.44%

Contributions	Error, [%]	12
Photon flux	1.0	<u> </u>
Target	0.1	ih (eV
Yield extraction	0.5	Widt
HYCAL eff.	0.2	becay
Beam parameters	0.4	
Trigger eff.	0.1	↑ 8
VETO eff.	0.3	μ0
Acceptance	0.3	7 -
Model errors (theory)	0.3	c
Physics background	0.25	
Branching ratio	0.03	
Total (syst.)	1.3	

A. Gasparian

Summary and Outlook

- > The π^0 lifetime is one of the few high precision QCD parameter-free predictions. Percent level measurement is a stringent test of QCD.
- > Availability of modern tagged-photon beams and novel calorimetry made the Primakoff method a feasible tool to reach the required few percent accuracy in $\pi^0 \rightarrow \gamma\gamma$ decay width.
- Compton and pair production cross section measurements demonstrate that the systematical errors can be controlled on one percent level. 1.5%
- > The model error in π^0 decay width extraction is currently controlled on 0.3% level.
- > The result from PrimEx-I is: $\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.82 \text{eV} \pm 2.2\%$ stat. $\pm 2.1\%$ syst. (3.0% total). It is 2.4 times more precise than current PDG value
- > With the PrimEx-II run we will reach the planned precision of 1.4%
- > The $\Gamma(\eta \rightarrow \gamma \gamma) \Gamma(\eta \rightarrow \gamma \gamma)$ precision experiments will be done with 12 GeV upgrade.

The End

Estimated Systematic Errors

Contributions	Error, [%]
Photon flux	1.0
Target	0.1
Yield extraction	1.6
HYCAL eff.	0.5
Beam parameters	0.4
Trigger eff.	0.1
VETO eff.	0.4
Acceptance	0.3
Model errors (theory)	0.3
Physics background	0.25
Branching ratio	0.03
Total	2.1

Luminosity Control: Pair Spectrometer

Measured in experiment:

- absolute tagging ratios:
 - TAC measurements at low intensities
- relative tagging ratios:
 - pair spectrometer at low and high intensities
- Uncertainty in photon flux at the level of 1% has been reached
- Verified by known cross sections of EM processes: > e⁺e⁻ pair production > Compton scattering

Some results on Coherent Production $\gamma + A \rightarrow \pi^0 + A$

Electromagnetic form factors

Estimated Systematic Errors for PrimEx-II

	Type of Errors	Errors in current data	Errors in this proposal
	Photon flux	1.0%	1.0%
	Target number	0.1%	0.1%
	Background subtraction	1.0%	0.4%
	Event selection	0.5%	0.35%
	HYCAL response function	0.5%	0.2%
	Beam parameters	0.4%	0.4%
	Acceptance	0.3%	0.3%
<	Model errors (theory)	1.0%	0.25%
	Physics background	0.25%	0.25%
	Branching ratio	0.03%	0.03%
	Total	2.0%	1.3%